
Information Security Inc.

Server Side Request Forgery

(SSRF)

Information Security Confidential - Partner Use Only

Contents

2

• About SSRF

• Topology

• Demo

• Mitigations

• References

Information Security Confidential - Partner Use Only

About SSRF

3

◎SSRF - Server Side Request Forgery.

The ability to create requests from the vulnerable server to intra/internet. Using a protocol

supported by available URI schemas, you can communicate with services running on

other protocols

◎ application creates internal requests, HTTP requests using HttpClient /

URL.openConnection()
◎ attacker can change the internal request to other location or use different parameters

Information Security Confidential - Partner Use Only

Topology

4

Testing topology

================

+------------+ +------------+

| Attacker | ----- +------------+ ----- | Vuln |

| | ----- | Firewall | --------- | Server |

+------------+ +------------+ +------------+

Network_1 Network_2

Network_1

172.30.13.0/24

Network_2

192.168.10.0/24

Information Security Confidential - Partner Use Only

Demo

5

◎ Vulnerable server runs a web server on 4.6.0-kali1-amd64

(Debian based)

◎ A vulnerable PHP script /* Vulnerable.php */ is uploaded

◎ Script in browser

Information Security Confidential - Partner Use Only

Demo

6

◎ Loading http://indishell.rtma.tk and can see

◎ Checking if the server validates user input or not

▲ URL: http://indishell.rtma.tk:22

▲ URL: http://indishell.rtma.tk:25

http://indishell.rtma.tk/

Information Security Confidential - Partner Use Only

Demo

7

◎ Get /etc/passwd from the vulnerable server

Information Security Confidential - Partner Use Only

Mitigations

8

• Error handling and messages – Display generic error messages to the client in case

something goes wrong. If content type validation fails, display generic errors to the client like

“Invalid Data retrieved”. Also ensure that the message is the same when the request fails on the

backend and if invalid data is received. This will prevent the application from being abused as

distinct error messages will be absent for closed and open ports. Under no circumstance should

the raw response received from the remote server be displayed to the client.

• Response Handling – Validating responses received from remote resources on the server side

is the most basic mitigation that can be readily implemented. If a web application expects

specific content type on the server, programmatically ensure that the data received satisfies

checks imposed on the server before displaying or processing the data for the client.

• Disable unwanted protocols – Allow only http and https to make requests to remote servers.

Whitelisting these protocols will prevent the web application from making requests over other

protocols like file:///, gopher://, ftp:// and other URI schemes.

• Blacklist IP addresses – Internal IP addresses, localhost specifications and internal hostnames

can all be blacklisted to prevent the web application from being abused to fetch data/attack

these devices. Implementing this will protect servers from one time attack vectors. For example,

even if the first fix (above) is implemented, the data is still being sent to the remote service. If an

attack that does not need to see responses is executed (like a buffer overflow exploit) then this

fix can actually prevent data from ever reaching the vulnerable device. Response handling is

then not required at all as a request was never made.

Information Security Confidential - Partner Use Only

References

9

• Wikipedia

http://en.wikipedia.org/wiki/URI_scheme

• CWE

http://cwe.mitre.org/data/definitions/918.html

• OWASP

https://www.owasp.org/index.php/Server_Side_Request_Forgery

https://www.owasp.org/index.php/Server_Side_Request_Forgery

